Primality proof for n = 288135026414491:
Take b = 2.
b^(n-1) mod n = 1.
27678676889 is prime.
b^((n-1)/27678676889)-1 mod n = 52597996143790, which is a unit, inverse 48789247497112.
(27678676889) divides n-1.
(27678676889)^2 > n.
n is prime by Pocklington's theorem.