Primality proof for n = 28938774045863136338797101017419358636139979142479826529885118867:
Take b = 2.
b^(n-1) mod n = 1.
13626337181548781961065021039528065521362245802247457 is prime.
b^((n-1)/13626337181548781961065021039528065521362245802247457)-1 mod n = 28018435748464604469298118436193935037852671595276679126801748584, which is a unit, inverse 15973007907401210867189188026328428489793310751492090673650333177.
(13626337181548781961065021039528065521362245802247457) divides n-1.
(13626337181548781961065021039528065521362245802247457)^2 > n.
n is prime by Pocklington's theorem.