Primality proof for n = 29047611873442575647497758179:
Take b = 2.
b^(n-1) mod n = 1.
297159362677 is prime.
b^((n-1)/297159362677)-1 mod n = 16062460713643416818883781818, which is a unit, inverse 7881196461825673388358983901.
545358713 is prime.
b^((n-1)/545358713)-1 mod n = 1548700731856248688196814843, which is a unit, inverse 9643653164146849936640551407.
(545358713 * 297159362677) divides n-1.
(545358713 * 297159362677)^2 > n.
n is prime by Pocklington's theorem.