Primality proof for n = 29235542524211150858901814862527031:
Take b = 2.
b^(n-1) mod n = 1.
132401351950596217829363773663 is prime.
b^((n-1)/132401351950596217829363773663)-1 mod n = 19230428791332840872835820628199647, which is a unit, inverse 15787824284887394482289708578604001.
(132401351950596217829363773663) divides n-1.
(132401351950596217829363773663)^2 > n.
n is prime by Pocklington's theorem.