Take b = 2.

b^(n-1) mod n = 1.

5879 is prime.

b^((n-1)/5879)-1 mod n = 130453607, which is a unit, inverse 4206811.

307 is prime.

b^((n-1)/307)-1 mod n = 114336306, which is a unit, inverse 283400995.

(307 * 5879) divides n-1.

(307 * 5879)^2 > n.

n is prime by Pocklington's theorem.