Primality proof for n = 2928325597569402103:
Take b = 2.
b^(n-1) mod n = 1.
39286345187279 is prime.
b^((n-1)/39286345187279)-1 mod n = 2713626407880780759, which is a unit, inverse 1974428338684840993.
(39286345187279) divides n-1.
(39286345187279)^2 > n.
n is prime by Pocklington's theorem.