Primality proof for n = 2949535533569:
Take b = 2.
b^(n-1) mod n = 1.
1512421 is prime.
b^((n-1)/1512421)-1 mod n = 2761602708722, which is a unit, inverse 595986881521.
293 is prime.
b^((n-1)/293)-1 mod n = 576499177705, which is a unit, inverse 445218633149.
(293 * 1512421) divides n-1.
(293 * 1512421)^2 > n.
n is prime by Pocklington's theorem.