Primality proof for n = 295429921339288635355502201959:
Take b = 2.
b^(n-1) mod n = 1.
93575169138071 is prime.
b^((n-1)/93575169138071)-1 mod n = 286279076949539690198556921030, which is a unit, inverse 276404923564080317163833908549.
12545359681 is prime.
b^((n-1)/12545359681)-1 mod n = 18510374850088764107039657359, which is a unit, inverse 98850597780046410562065514978.
(12545359681 * 93575169138071) divides n-1.
(12545359681 * 93575169138071)^2 > n.
n is prime by Pocklington's theorem.