Primality proof for n = 29799794382272025079:
Take b = 2.
b^(n-1) mod n = 1.
1757533197983 is prime.
b^((n-1)/1757533197983)-1 mod n = 13773779460676492694, which is a unit, inverse 5228153328996212518.
(1757533197983) divides n-1.
(1757533197983)^2 > n.
n is prime by Pocklington's theorem.