Primality proof for n = 298908837206431:
Take b = 2.
b^(n-1) mod n = 1.
752881 is prime.
b^((n-1)/752881)-1 mod n = 195401171245607, which is a unit, inverse 48391663153048.
157 is prime.
b^((n-1)/157)-1 mod n = 39253511115524, which is a unit, inverse 66705492092546.
(157 * 752881) divides n-1.
(157 * 752881)^2 > n.
n is prime by Pocklington's theorem.