Primality proof for n = 300984643119527704331:
Take b = 2.
b^(n-1) mod n = 1.
59724981817583 is prime.
b^((n-1)/59724981817583)-1 mod n = 178580651581030377143, which is a unit, inverse 241084490235940532855.
(59724981817583) divides n-1.
(59724981817583)^2 > n.
n is prime by Pocklington's theorem.