Primality proof for n = 3012146720727260651:
Take b = 2.
b^(n-1) mod n = 1.
59016512273 is prime.
b^((n-1)/59016512273)-1 mod n = 2244989096248094561, which is a unit, inverse 2770995529219355799.
(59016512273) divides n-1.
(59016512273)^2 > n.
n is prime by Pocklington's theorem.