Primality proof for n = 30257753761:
Take b = 2.
b^(n-1) mod n = 1.
3491 is prime.
b^((n-1)/3491)-1 mod n = 18106407921, which is a unit, inverse 20446598342.
463 is prime.
b^((n-1)/463)-1 mod n = 25703821860, which is a unit, inverse 1742925581.
(463 * 3491) divides n-1.
(463 * 3491)^2 > n.
n is prime by Pocklington's theorem.