Primality proof for n = 3028241:
Take b = 2.
b^(n-1) mod n = 1.
37853 is prime. b^((n-1)/37853)-1 mod n = 685874, which is a unit, inverse 917730.
(37853) divides n-1.
(37853)^2 > n.
n is prime by Pocklington's theorem.