Primality proof for n = 3055649:
Take b = 2.
b^(n-1) mod n = 1.
137 is prime.
b^((n-1)/137)-1 mod n = 853660, which is a unit, inverse 2467009.
41 is prime.
b^((n-1)/41)-1 mod n = 862869, which is a unit, inverse 2691065.
(41 * 137) divides n-1.
(41 * 137)^2 > n.
n is prime by Pocklington's theorem.