Primality proof for n = 31002614113816567181:
Take b = 2.
b^(n-1) mod n = 1.
66721073718023 is prime.
b^((n-1)/66721073718023)-1 mod n = 28399559369264978603, which is a unit, inverse 17080331612411478219.
(66721073718023) divides n-1.
(66721073718023)^2 > n.
n is prime by Pocklington's theorem.