Primality proof for n = 325470079171:
Take b = 2.
b^(n-1) mod n = 1.
68232721 is prime. b^((n-1)/68232721)-1 mod n = 95249040897, which is a unit, inverse 318453407809.
(68232721) divides n-1.
(68232721)^2 > n.
n is prime by Pocklington's theorem.