Primality proof for n = 3258667:
Take b = 2.
b^(n-1) mod n = 1.
673 is prime.
b^((n-1)/673)-1 mod n = 1168941, which is a unit, inverse 2846429.
269 is prime.
b^((n-1)/269)-1 mod n = 385173, which is a unit, inverse 661060.
(269 * 673) divides n-1.
(269 * 673)^2 > n.
n is prime by Pocklington's theorem.