Primality proof for n = 330659614771:
Take b = 2.
b^(n-1) mod n = 1.
479216833 is prime.
b^((n-1)/479216833)-1 mod n = 58495006852, which is a unit, inverse 84694168119.
(479216833) divides n-1.
(479216833)^2 > n.
n is prime by Pocklington's theorem.