Primality proof for n = 3317349640749355357762425066592395746459685764401801118712075735758936647:
Take b = 2.
b^(n-1) mod n = 1.
112600039977335252189018616651067202354555503111433 is prime.
b^((n-1)/112600039977335252189018616651067202354555503111433)-1 mod n = 2505445937353388377419036204109004931114055448410270729464732307348146784, which is a unit, inverse 2738837858722100087343728372131559385275209547771577158037758392761548840.
(112600039977335252189018616651067202354555503111433) divides n-1.
(112600039977335252189018616651067202354555503111433)^2 > n.
n is prime by Pocklington's theorem.