Primality proof for n = 3349165422878785925015878589251126153623290029037:
Take b = 2.
b^(n-1) mod n = 1.
1890206079784759632867687927237221931415993 is prime.
b^((n-1)/1890206079784759632867687927237221931415993)-1 mod n = 669725195614843691932517752318403731484025608806, which is a unit, inverse 2684461587698068219803649355754103251785442019157.
(1890206079784759632867687927237221931415993) divides n-1.
(1890206079784759632867687927237221931415993)^2 > n.
n is prime by Pocklington's theorem.