Primality proof for n = 3402277943:
Take b = 2.
b^(n-1) mod n = 1.
1609403 is prime. b^((n-1)/1609403)-1 mod n = 1521345083, which is a unit, inverse 460393886.
(1609403) divides n-1.
(1609403)^2 > n.
n is prime by Pocklington's theorem.