Primality proof for n = 341948486974166000522343609283189:
Take b = 2.
b^(n-1) mod n = 1.
29047611873442575647497758179 is prime.
b^((n-1)/29047611873442575647497758179)-1 mod n = 291782875431971620014836968593542, which is a unit, inverse 230912421032721991545077801069578.
(29047611873442575647497758179) divides n-1.
(29047611873442575647497758179)^2 > n.
n is prime by Pocklington's theorem.