Primality proof for n = 34275585315876169535825731013955432020686980960977076060073381689104960386232837:
Take b = 2.
b^(n-1) mod n = 1.
140731847223860698993672433903061203299016858671554230293 is prime.
b^((n-1)/140731847223860698993672433903061203299016858671554230293)-1 mod n = 23089509854221172424401581257982806275595335146777838859250934128633289823091101, which is a unit, inverse 26158314353944334524409169873348382385386764128548229292861191193338731887078887.
(140731847223860698993672433903061203299016858671554230293) divides n-1.
(140731847223860698993672433903061203299016858671554230293)^2 > n.
n is prime by Pocklington's theorem.