Primality proof for n = 34741861125639557:
Take b = 2.
b^(n-1) mod n = 1.
1764234391 is prime.
b^((n-1)/1764234391)-1 mod n = 9802789075094486, which is a unit, inverse 30460684132543118.
(1764234391) divides n-1.
(1764234391)^2 > n.
n is prime by Pocklington's theorem.