Primality proof for n = 352173651449:
Take b = 2.
b^(n-1) mod n = 1.
5617163 is prime. b^((n-1)/5617163)-1 mod n = 123769593050, which is a unit, inverse 141072620604.
(5617163) divides n-1.
(5617163)^2 > n.
n is prime by Pocklington's theorem.