Primality proof for n = 3560584187609609:
Take b = 2.
b^(n-1) mod n = 1.
3938699322577 is prime.
b^((n-1)/3938699322577)-1 mod n = 3027836486820334, which is a unit, inverse 2341970946339907.
(3938699322577) divides n-1.
(3938699322577)^2 > n.
n is prime by Pocklington's theorem.