Primality proof for n = 359300521211:
Take b = 2.
b^(n-1) mod n = 1.
113344013 is prime.
b^((n-1)/113344013)-1 mod n = 51408227156, which is a unit, inverse 314748435124.
(113344013) divides n-1.
(113344013)^2 > n.
n is prime by Pocklington's theorem.