Primality proof for n = 36131535570665139281:
Take b = 2.
b^(n-1) mod n = 1.
34741861125639557 is prime.
b^((n-1)/34741861125639557)-1 mod n = 33941667622209200900, which is a unit, inverse 34937251657578275575.
(34741861125639557) divides n-1.
(34741861125639557)^2 > n.
n is prime by Pocklington's theorem.