Primality proof for n = 362301523:
Take b = 2.
b^(n-1) mod n = 1.
5233 is prime.
b^((n-1)/5233)-1 mod n = 182567444, which is a unit, inverse 36805502.
1049 is prime.
b^((n-1)/1049)-1 mod n = 163027209, which is a unit, inverse 109709655.
(1049 * 5233) divides n-1.
(1049 * 5233)^2 > n.
n is prime by Pocklington's theorem.