Primality proof for n = 3734491:
Take b = 2.
b^(n-1) mod n = 1.
443 is prime.
b^((n-1)/443)-1 mod n = 1757904, which is a unit, inverse 3403962.
281 is prime.
b^((n-1)/281)-1 mod n = 1474772, which is a unit, inverse 642019.
(281 * 443) divides n-1.
(281 * 443)^2 > n.
n is prime by Pocklington's theorem.