Primality proof for n = 3752823319668658282198008768437:
Take b = 2.
b^(n-1) mod n = 1.
5515321256273 is prime.
b^((n-1)/5515321256273)-1 mod n = 2747073406794906297478364815677, which is a unit, inverse 1066146088537248865400965292014.
212102557441 is prime.
b^((n-1)/212102557441)-1 mod n = 91589828250278777785234740363, which is a unit, inverse 936916363623536847769228284150.
(212102557441 * 5515321256273) divides n-1.
(212102557441 * 5515321256273)^2 > n.
n is prime by Pocklington's theorem.