Take b = 2.

b^(n-1) mod n = 1.

59 is prime.

b^((n-1)/59)-1 mod n = 4997, which is a unit, inverse 37229.

23 is prime.

b^((n-1)/23)-1 mod n = 26633, which is a unit, inverse 37131.

(23 * 59) divides n-1.

(23 * 59)^2 > n.

n is prime by Pocklington's theorem.