Primality proof for n = 380103483577:
Take b = 2.
b^(n-1) mod n = 1.
26889041 is prime. b^((n-1)/26889041)-1 mod n = 38559691662, which is a unit, inverse 349969380950.
(26889041) divides n-1.
(26889041)^2 > n.
n is prime by Pocklington's theorem.