Primality proof for n = 3803739800316731423245653299251:
Take b = 2.
b^(n-1) mod n = 1.
41347742847751193213 is prime.
b^((n-1)/41347742847751193213)-1 mod n = 1784397097915812085498575315046, which is a unit, inverse 3415835714747081810924021793932.
(41347742847751193213) divides n-1.
(41347742847751193213)^2 > n.
n is prime by Pocklington's theorem.