Primality proof for n = 3848175851593:
Take b = 2.
b^(n-1) mod n = 1.
407203 is prime.
b^((n-1)/407203)-1 mod n = 197523662354, which is a unit, inverse 3187516971646.
393761 is prime.
b^((n-1)/393761)-1 mod n = 1737520707303, which is a unit, inverse 2093933288755.
(393761 * 407203) divides n-1.
(393761 * 407203)^2 > n.
n is prime by Pocklington's theorem.