Primality proof for n = 38818558648101949187:
Take b = 2.
b^(n-1) mod n = 1.
85984049513 is prime.
b^((n-1)/85984049513)-1 mod n = 23847627279141616323, which is a unit, inverse 12962008146555259535.
(85984049513) divides n-1.
(85984049513)^2 > n.
n is prime by Pocklington's theorem.