Primality proof for n = 391669282183:
Take b = 2.
b^(n-1) mod n = 1.
1569301 is prime. b^((n-1)/1569301)-1 mod n = 126544476127, which is a unit, inverse 71262010238.
(1569301) divides n-1.
(1569301)^2 > n.
n is prime by Pocklington's theorem.