Primality proof for n = 392279121964710096549298451519713063:
Take b = 2.
b^(n-1) mod n = 1.
163131120638915058577002756917 is prime.
b^((n-1)/163131120638915058577002756917)-1 mod n = 210290187413216492249947612049323714, which is a unit, inverse 69411404797376114228655188798012230.
(163131120638915058577002756917) divides n-1.
(163131120638915058577002756917)^2 > n.
n is prime by Pocklington's theorem.