Primality proof for n = 39295853:
Take b = 2.
b^(n-1) mod n = 1.
118361 is prime. b^((n-1)/118361)-1 mod n = 19339856, which is a unit, inverse 27491427.
(118361) divides n-1.
(118361)^2 > n.
n is prime by Pocklington's theorem.