Primality proof for n = 393203:
Take b = 2.
b^(n-1) mod n = 1.
89 is prime.
b^((n-1)/89)-1 mod n = 174030, which is a unit, inverse 356359.
47 is prime.
b^((n-1)/47)-1 mod n = 385391, which is a unit, inverse 262085.
(47^2 * 89) divides n-1.
(47^2 * 89)^2 > n.
n is prime by Pocklington's theorem.