Primality proof for n = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643:
Take b = 2.
b^(n-1) mod n = 1.
3055465788140352002733946906144561090641249606160407884365391979704929268480326390471 is prime.
b^((n-1)/3055465788140352002733946906144561090641249606160407884365391979704929268480326390471)-1 mod n = 29822700237508349747469333737849467315490036888071260419407979328895365226366607357778169987538289234418614181375748, which is a unit, inverse 6690982755611728604002668186530857022804999950720040049042778753912660326557620697048332797102831257476360889901329.
(3055465788140352002733946906144561090641249606160407884365391979704929268480326390471) divides n-1.
(3055465788140352002733946906144561090641249606160407884365391979704929268480326390471)^2 > n.
n is prime by Pocklington's theorem.