Primality proof for n = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319:

Take b = 2.

b^(n-1) mod n = 1.

19173790298027098165721053155794528970226934547887232785722672956982046098136719667167519737147526097 is prime.
b^((n-1)/19173790298027098165721053155794528970226934547887232785722672956982046098136719667167519737147526097)-1 mod n = 20589130545846038237401292368512872887777285501716675359660390814757880357128794021938900177283661979735628815822796, which is a unit, inverse 29383782265230260129358932694103216031094940221335538712016733030718368683237214395286358116911883279502983351240333.

(19173790298027098165721053155794528970226934547887232785722672956982046098136719667167519737147526097) divides n-1.

(19173790298027098165721053155794528970226934547887232785722672956982046098136719667167519737147526097)^2 > n.

n is prime by Pocklington's theorem.