Primality proof for n = 39402006196394479212279040100143613805079739270465446667949681528863784143880477088695575868365581090168780292281997:
Take b = 2.
b^(n-1) mod n = 1.
473067492335442271493300927295906676954200039911784049787606885062385680884289589892557 is prime.
b^((n-1)/473067492335442271493300927295906676954200039911784049787606885062385680884289589892557)-1 mod n = 35496902192444066518213776656031541447211458838014391797151446570664984683139558112359758226566172177475770194306318, which is a unit, inverse 10262161249522388633498437676971653811891994053615999133526119078346125495410612120247733753680040407496983909065974.
(473067492335442271493300927295906676954200039911784049787606885062385680884289589892557) divides n-1.
(473067492335442271493300927295906676954200039911784049787606885062385680884289589892557)^2 > n.
n is prime by Pocklington's theorem.