Primality proof for n = 3981375605939564164049:
Take b = 2.
b^(n-1) mod n = 1.
998970029 is prime.
b^((n-1)/998970029)-1 mod n = 747785645836125837029, which is a unit, inverse 3347458337248753549721.
3678217 is prime.
b^((n-1)/3678217)-1 mod n = 3184443142246297328418, which is a unit, inverse 1150790250003688746288.
(3678217 * 998970029) divides n-1.
(3678217 * 998970029)^2 > n.
n is prime by Pocklington's theorem.