Primality proof for n = 39850487891:
Take b = 2.
b^(n-1) mod n = 1.
272333 is prime. b^((n-1)/272333)-1 mod n = 4150408928, which is a unit, inverse 20340756640.
(272333) divides n-1.
(272333)^2 > n.
n is prime by Pocklington's theorem.