Primality proof for n = 40043063:
Take b = 2.
b^(n-1) mod n = 1.
1657 is prime.
b^((n-1)/1657)-1 mod n = 2248942, which is a unit, inverse 15298999.
281 is prime.
b^((n-1)/281)-1 mod n = 27349189, which is a unit, inverse 35656853.
(281 * 1657) divides n-1.
(281 * 1657)^2 > n.
n is prime by Pocklington's theorem.