Primality proof for n = 4019927965686165521481374447:
Take b = 2.
b^(n-1) mod n = 1.
38818558648101949187 is prime.
b^((n-1)/38818558648101949187)-1 mod n = 2567203978082174180542092465, which is a unit, inverse 1985617555502541601781729247.
(38818558648101949187) divides n-1.
(38818558648101949187)^2 > n.
n is prime by Pocklington's theorem.