Primality proof for n = 4048673:
Take b = 2.
b^(n-1) mod n = 1.
6659 is prime. b^((n-1)/6659)-1 mod n = 1785997, which is a unit, inverse 3486811.
(6659) divides n-1.
(6659)^2 > n.
n is prime by Pocklington's theorem.