Primality proof for n = 407203:
Take b = 2.
b^(n-1) mod n = 1.
67867 is prime. b^((n-1)/67867)-1 mod n = 63, which is a unit, inverse 323177.
(67867) divides n-1.
(67867)^2 > n.
n is prime by Pocklington's theorem.